Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids

نویسندگان

  • Eric T. Chung
  • Patrick Ciarlet
  • Tang Fei Yu
چکیده

In this paper, a new type of staggered discontinuous Galerkin methods for the three dimensional Maxwell’s equations is developed and analyzed. The spatial discretization is based on staggered Cartesian grids so that many good properties are obtained. First of all, our method has the advantages that the numerical solution preserves the electromagnetic energy and automatically fulfills a discrete version of the Gauss law. Moreover, the mass matrices are diagonal, thus time marching is explicit and is very efficient. Our method is high order accurate and the optimal order of convergence is rigorously proved. It is also very easy to implement due to its Cartesian structure and can be regarded as a generalization of the classical Yee’s scheme as well as the quadrilateral edge finite elements. Furthermore, a superconvergence result, that is the convergence rate is one order higher at interpolation nodes, is proved. Numerical results are shown to confirm our theoretical statements, and applications to problems in unbounded domains with the use of PML are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of the Local Discontinuousgalerkin Method for Elliptic Problems on Cartesiangridsbernardo

In this paper, we present a super-convergence result for the Local Discontinuous Galerkin method for a model elliptic problem on Cartesian grids. We identify a special numerical ux for which the L 2-norm of the gradient and the L 2-norm of the potential are of order k + 1=2 and k + 1, respectively, when tensor product polynomials of degree at most k are used; for arbitrary meshes, this special ...

متن کامل

Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations

Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to...

متن کامل

A Three-Dimensional Recovery-Based Discontinuous Galerkin Method for Turbulence Simulations

Discontinuous Galerkin (DG) methods have recently received much attention because of their portability to complex geometries, scalability in parallel architectures and relatively simple extension to high order. However, their implementation for compressible turbulence problems is not straightforward, e.g., due to parameter-free limiting for orders greater than first and the lack of a consistent...

متن کامل

A Discontinuous Galerkin Method for the Time-Domain Solution of 3D Maxwell's Equations on Non-Conforming Locally Refined Grids

A discontinuous Galerkin method is proposed for the numerical solution of the three-dimensional time-domain Maxwell's equations. A leap frog scheme is used for advancing in time. The scheme resulting can handle highly heterogeneous material, non diffusive and highly adaptable (it has been implemented on tetrahedral or hexahedral grids, including non-conforming). In some cases, some divergence c...

متن کامل

Superconvergence and time evolution of discontinuous Galerkin finite element solutions

In this paper, we study the convergence and time evolution of the error between the discontinuous Galerkin (DG) finite element solution and the exact solution for conservation laws when upwind fluxes are used. We prove that if we apply piecewise linear polynomials to a linear scalar equation, the DG solution will be superconvergent towards a particular projection of the exact solution. Thus, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2013